Cart (Loading....) | Create Account
Close category search window
 

Linewidth-Tolerant and Low-Complexity Two-Stage Carrier Phase Estimation Based on Modified QPSK Partitioning for Dual-Polarization 16-QAM Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Kang Ping Zhong ; Dept. of Electr. & Comput. Eng., Queen''s Univ., Kingston, ON, Canada ; Jian Hong Ke ; Ying Gao ; Cartledge, J.C.

Three novel linewidth-tolerant, low-complexity, two-stage feed-forward carrier phase estimation algorithms are introduced for dual-polarization 16-ary quadrature amplitude modulation (DP 16-QAM) with coherent detection. The first stage employs either the quadrature phase-shift keying (QPSK) partitioning algorithm, simplified QPSK partitioning algorithm, or blind phase search (BPS) algorithm. The second stage employs a novel modified QPSK partitioning algorithm. Based on experimental data, all three algorithms achieve comparable performance for DP 16-QAM back to back and transmission systems. The linewidth tolerance for the three algorithms is numerically studied. A linewidth symbol duration product of 1.3×10-4 is demonstrated for a 1 dB optical signal-to-noise-ratio penalty at a bit error ratio 10-3 of for all the proposed algorithms, which is comparable to the single-stage BPS algorithm with a large number of test phases. Reductions in the hardware complexity by factors of about 1.7-5.3 are achieved in comparison to the single-stage BPS algorithm.

Published in:

Lightwave Technology, Journal of  (Volume:31 ,  Issue: 1 )

Date of Publication:

Jan.1, 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.