By Topic

A comparative study of remotely sensed data classification using principal components analysis and divergence

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Chih-Cheng Hung ; Dept. of Math. & Comput. Sci., Alabama A&M Univ., Normal, AL, USA ; Fahsi, A. ; Tadesse, W. ; Coleman, T.

This paper investigates the principal components analysis (PCA) and divergence for transforming and selecting data bands for multispectral image classification. As the principal components are independent of one another, a color combination of the first three components can be useful in providing maximum visual separability of image features. Therefore, principal components analysis is used to generate a new set of data. Divergence, a measurement of statistical separability, is employed as a method of feature selection to choose the optimal m-band subset from the n-band data for use in the automated classification process. Classification accuracy assessment is carried out using large scale aerial photographs. Classification results on the Landsat Thematic Mapper (TM) data show that PCA is a more effective approach than divergence

Published in:

Systems, Man, and Cybernetics, 1997. Computational Cybernetics and Simulation., 1997 IEEE International Conference on  (Volume:3 )

Date of Conference:

12-15 Oct 1997