By Topic

Splat Feature Classification With Application to Retinal Hemorrhage Detection in Fundus Images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Li Tang ; Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA ; Meindert Niemeijer ; Joseph M. Reinhardt ; Mona K. Garvin
more authors

A novel splat feature classification method is presented with application to retinal hemorrhage detection in fundus images. Reliable detection of retinal hemorrhages is important in the development of automated screening systems which can be translated into practice. Under our supervised approach, retinal color images are partitioned into nonoverlapping segments covering the entire image. Each segment, i.e., splat, contains pixels with similar color and spatial location. A set of features is extracted from each splat to describe its characteristics relative to its surroundings, employing responses from a variety of filter bank, interactions with neighboring splats, and shape and texture information. An optimal subset of splat features is selected by a filter approach followed by a wrapper approach. A classifier is trained with splat-based expert annotations and evaluated on the publicly available Messidor dataset. An area under the receiver operating characteristic curve of 0.96 is achieved at the splat level and 0.87 at the image level. While we are focused on retinal hemorrhage detection, our approach has potential to be applied to other object detection tasks.

Published in:

IEEE Transactions on Medical Imaging  (Volume:32 ,  Issue: 2 )