Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Phenology parameter extraction from time-series of satellite vegetation index data using phenosat

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Rodrigues, A. ; Centro de Investig. em Cienc. Geo-Espaciais, Univ. do Porto, Porto, Portugal ; Marcal, A.R.S. ; Cunha, M.

PhenoSat is an experimental software tool that extracts phenological information from satellite vegetation index time-series. Temporal satellite NDVI data provided by VEGETATION sensor from three different vegetation types (Vineyard, Closed Deciduous Forest and Deciduous Shrubland with Sparse Trees) and for different geographical locations were used to test the ability of the software in extracting vegetation dynamics information. Six noise reduction filters were tested: piecewise-logistic, Savitzky-Golay, cubic smoothing splines, Gaussian models, Fourier series and polynomial curve fitting. The results showed that PhenoSat is an useful tool to extract phenological NDVI metrics, providing similar results to those obtained from field measurements. The best results presented correlations of 0.89 (n=6; p<;0.01) and 0.71 (n=6; p<;0.06) for the green-up and maximum stages, respectively. In the fitting process, the polynomial and Gaussian algorithms over smoothed the peak related with a double-growth season, the opposite to the other methods that could detect more accurately this peak.

Published in:

Geoscience and Remote Sensing Symposium (IGARSS), 2012 IEEE International

Date of Conference:

22-27 July 2012