By Topic

A SPA-based K-means clustering algorithm for the remote sensing information extraction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Xiangjia Xie ; Fac. of Land & Resource Eng., Kunming Univ. of Sci. & Technol., Kunming, China ; Junsan Zhao ; Hongbo Li ; Wanqiang Zhang
more authors

Set Pair Analysis (SPA) is a new methodology to describe and process uncertainty system, which has been applied in many fields recently. In this paper, a new approach to remote sensing information extraction, the SPA-based k-means clustering algorithm (SPAKM), has been proposed based on the principle of SPA. The basic ideals and steps of SPAKM are discussed. The proposed algorithm can overcome the limitation of K-means clustering algorithm to certain extent. Finally, cluster analysis experiments of LANDSAT TM image have been made. The results show that the improved K-means clustering algorithm is superior to K-means in classification accuracy of land cover classes of mixed pixels.

Published in:

Geoscience and Remote Sensing Symposium (IGARSS), 2012 IEEE International

Date of Conference:

22-27 July 2012