By Topic

Hyperspectral imagery super-resolution by image fusion and compressed sensing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Yongqiang Zhao ; Coll. of Autom., Northwestern Polytech. Univ., Xi''an, China ; Yaozhong Yang ; Qingyong Zhang ; Jinxiang Yang
more authors

Low spatial resolution is the mainly drawback of hyperspectral imaging. Image super-resolution techniques can be applied to overcome the limits. This paper presents a new framework for improving the spatial resolution of hyperspectral images base by combing high-resolution spectral information and high-resolution spatial information by image fusion and compressed sensing. Based on the compressed sensing theory, small patches of hyperspectral observations from different wavelengths can be represented as weighted linear combinations of a small number of atoms in dictionary which is trained by using panchromatic images. Then hyperspectral image super-resolution is treated as a special image fusion problem with sparse constraints. To make the super-resolution reconstruction more accurate, local manifold projection is used as a regulation term. Extensive experiments on image super-resolution validate that proposed method achieves much better results.

Published in:

Geoscience and Remote Sensing Symposium (IGARSS), 2012 IEEE International

Date of Conference:

22-27 July 2012