Cart (Loading....) | Create Account
Close category search window

Semi-supervised and unsupervised novelty detection using nested support vector machines

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
de Morsier, F. ; LTS 5, Ecole Polytech. Fed. de Lausanne, Lausanne, Switzerland ; Borgeaud, M. ; Kuchler, C. ; Gass, V.
more authors

Very often in change detection only few labels or even none are available. In order to perform change detection in these extreme scenarios, they can be considered as novelty detection problems, semi-supervised (SSND) if some labels are available otherwise unsupervised (UND). SSND can be seen as an unbalanced classification between labeled and unlabeled samples using the Cost-Sensitive Support Vector Machine (CS-SVM). UND assumes novelties in low density regions and can be approached using the One-Class SVM (OC-SVM). We propose here to use nested entire solution path algorithms for the OC-SVM and CS-SVM in order to accelerate the parameter selection and alleviate the dependency to labeled “changed” samples. Experiments are performed on two multitemporal change detection datasets (flood and fire detection) and the performance of the two methods proposed compared.

Published in:

Geoscience and Remote Sensing Symposium (IGARSS), 2012 IEEE International

Date of Conference:

22-27 July 2012

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.