By Topic

Hyperspectral remote sensing image classification based on the integration of support vector machine and random forest

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

Support vector machine (SVM) and Random Forest (RF) have been developed to improve the accuracy of hyperspectral remote sensing (HRS) image classification significantly in recent years. Due to the different characteristics and obvious diversity between SVM and RF, we propose two integration approaches which combine SVM and Random Forest to classify the HRS image. The proposed method called DWDCS is examined by two hyperspectral images and it can acquire the higher overall accuracy and also improve the accuracy of each classes. Experimental results indicate that the proposed approaches have a great deal of advantages in classifying HRS image.

Published in:

Geoscience and Remote Sensing Symposium (IGARSS), 2012 IEEE International

Date of Conference:

22-27 July 2012