By Topic

Multiple-kernel learning-based unmixing algorithm for estimation of cloud fractions with MODIS and CloudSat data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Yanfeng Gu ; Dept. of Inf. Eng., Harbin Inst. of Technol., Harbin, China ; Shizhe Wang ; Tao Shi ; Yinghui Lu
more authors

Detection of clouds in satellite-generated radiance images, including those from MODIS, is an important first step in many applications of these data. In this paper we apply spectral unmixing to this problem with the aim of estimating subpixel cloud fractions, as opposed to identification only of whether or not a pixel radiance contains cloud contributions. We formulate the spectral unmixing approach in terms of multiple-kernel learning (MKL). To this end we propose a MKL-based unmixing algorithm that drives a multiple-kernel description of cloud, enabling estimation of sub-pixel cloud fractions. This approach is based on supervised learning. We generate training and testing samples by using CloudSat and CALIPSO data to compute cloud fractions within individual MODIS pixels. Results of our study on limited data (1875 training and testing MODIS pixels along with their CloudSat and CALIPSO based sub-pixel cloud fractions) show that the proposed algorithm can effectively estimate sub-pixel MODIS cloud fraction and outperforms support vector machine (SVM) in terms of estimation performance.

Published in:

Geoscience and Remote Sensing Symposium (IGARSS), 2012 IEEE International

Date of Conference:

22-27 July 2012