Scheduled System Maintenance:
On Wednesday, July 29th, IEEE Xplore will undergo scheduled maintenance from 7:00-9:00 AM ET (11:00-13:00 UTC). During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Fault detection in copper-rotor SEIG system using artificial neural network for distributed wind power generation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Iyer, K.L.V. ; Centre for Hybrid Automotive Res. & Green Energy, Univ. of Windsor, Windsor, ON, Canada ; Xiaomin Lu ; Mukherjee, K. ; Kar, N.C.

Too much dependence on large, polluting and expensive generation is no longer an option that Canadians would endorse in this era of distributed generation through renewable energy systems. Understanding the significance and prospects of self-excited induction generators (SEIGs) in distributed wind power generation, this paper presents an exclusive study of fault and a artificial neural network (ANN) based technique for its detection across the stator terminals of the SEIG. Firstly, two-axis model of a 7.5 hp industrial copper-rotor SEIG is developed to perform numerical investigations under static loading conditions, faulty conditions and hence derive data for designing the ANN based detection scheme. Fault tolerant capability of the machine is experimentally elicited by applying a short-circuit fault across the terminals of the machine and the need for fault detection in the SEIG system is discussed. Lastly, a novel ANN based scheme is developed for fault detection and numerical investigations are performed to illustrate the performance of the developed scheme. This paper aims to provide a good study to understand and develop a ANN based device for fault detection in a SEIG system.

Published in:

Electrical Machines (ICEM), 2012 XXth International Conference on

Date of Conference:

2-5 Sept. 2012