By Topic

Maximizing the energy efficiency of a PMSM for vehicular applications using an iron loss accounting optimization based on nonlinear programming

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Rabiei, A. ; Dept. of Energy & Environ., Chalmers Univ. of Technol., Gothenburg, Sweden ; Thiringer, T. ; Lindberg, J.

A nonlinear programming optimization algorithm is implemented for the control of a PMSM to find the optimum current vector references which minimize the total copper and core losses in the entire operating region of the motor, including the field weakening mode. The maximum voltage and current constraints of the drive system are also included in the optimization. The results for an investigated 50 kW PMSM-machine from the optimization algorithm is compared with Maximum Torque Per Ampere(MTPA) field oriented vector control method which inherently takes in to account the copper loss only. It is shown that the efficiency is improved in the entire high-speed operating region of the machine up to 8%. Besides, the machine is simulated in an electric vehicle and it is shown that by using the optimization method instead of the MTPA, the power loss is decreased up to 1.5 % in NEDC drive cycle. Furthermore the loss determination in the equivalent circuit has been further improved by using a variable core loss resistance.

Published in:

Electrical Machines (ICEM), 2012 XXth International Conference on

Date of Conference:

2-5 Sept. 2012