By Topic

Learning smooth models of nonsmooth functions via convex optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
F. Lauer ; Université de Lorraine, LORIA, UMR 7503, CNRS, Inria, France ; V. L. Le ; G. Bloch

This paper proposes a learning framework and a set of algorithms for nonsmooth regression, i.e., for learning piecewise smooth target functions with discontinuities in the function itself or the derivatives at unknown locations. In the proposed approach, the model belongs to a class of smooth functions. Though constrained to be globally smooth, the trained model can have very large derivatives at particular locations to approximate the nonsmoothness of the target function. This is obtained through the definition of new regularization terms which penalize the derivatives in a location-dependent manner and training algorithms in the form of convex optimization problems. Examples of application to hybrid dynamical system identification and image reconstruction are provided.

Published in:

2012 IEEE International Workshop on Machine Learning for Signal Processing

Date of Conference:

23-26 Sept. 2012