By Topic

Bayesian network learning algorithm based on unconstrained optimization and ant colony optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $33
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chunfeng Wang ; Department of Mathematical Sciences, Xidian University, Xi'an 710071, P. R. China; Department of Mathematics, Henan Normal University, Xinxiang 453007, P. R. China ; Sanyang Liu ; Mingmin Zhu

Structure learning of Bayesian networks is a well-researched but computationally hard task. For learning Bayesian networks, this paper proposes an improved algorithm based on unconstrained optimization and ant colony optimization (U-ACO-B) to solve the drawbacks of the ant colony optimization (ACO-B). In this algorithm, firstly, an unconstrained optimization problem is solved to obtain an undirected skeleton, and then the ACO algorithm is used to orientate the edges, thus returning the final structure. In the experimental part of the paper, we compare the performance of the proposed algorithm with ACO-B algorithm. The experimental results show that our method is effective and greatly enhance convergence speed than ACO-B algorithm.

Published in:

Journal of Systems Engineering and Electronics  (Volume:23 ,  Issue: 5 )