By Topic

Accurate X-Propagation for Test Applications by SAT-Based Reasoning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kochte, M.A. ; Inst. of Comput. Archit. & Comput. Eng., Univ. of Stuttgart, Stuttgart, Germany ; Elm, M. ; Wunderlich, H.

Unknown or X-values during test applications may originate from uncontrolled sequential cells or macros, from clock or A/D boundaries, or from tristate logic. The exact identification of X-value propagation paths in logic circuits is crucial in logic simulation and fault simulation. In the first case, it enables the proper assessment of expected responses and the effective and efficient handling of X-values during test response compaction. In the second case, it is important for a proper assessment of fault coverage of a given test set and consequently influences the efficiency of test pattern generation. The commonly employed n-valued logic simulation evaluates the propagation of X-values only pessimistically, i.e., the X-propagation paths found by n -valued logic simulation are a superset of the actual propagation paths. This paper presents an efficient method for overcoming this pessimism and for determining accurately the set of signals that carry an X-value for an input pattern. As examples, it investigates the influence of this pessimism on the two applications, X-masking and stuck-at fault coverage assessment. The experimental results on benchmark and industrial circuits assess the pessimism of classic algorithms and show that these algorithms significantly overestimate the signals with X-values. The experiments show that overmasking of test data during test compression can be reduced by an accurate analysis. In stuck-at fault simulation, the coverage of the test set is increased by the proposed algorithm without incurring any overhead.

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:31 ,  Issue: 12 )