By Topic

Integrated Kernel Partitioning and Scheduling for Coarse-Grained Reconfigurable Arrays

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ansaloni, G. ; Embedded Syst. Lab., Ecole Polytech. Fed. de Lausanne, Lausanne, Switzerland ; Tanimura, K. ; Pozzi, L. ; Dutt, N.

Coarse-grained reconfigurable arrays (CGRAs) are a promising class of architectures conjugating flexibility and efficiency. Devising effective methodologies to map applications onto CGRAs is a challenging task, due to their parallel execution paradigm and constrained hardware resources. In order to handle complex applications, it is important to devise efficient strategies to partition a kernel into pieces that obey resource constraint and methodologies to schedule them on the underlying hardware. In this paper, we tackle these problems by proposing algorithms to address partitioning based on recursive searches over abstract trees. A novel scheduling strategy is also described that, leveraging differences in delays of various operations, is able to efficiently map operations on CGRA architectures. Experimental evidence on kernels derived from a diverse set of data flow graphs and EEMBC benchmarks demonstrate the efficacy of the described methods, which, when combined, achieve a higher runtime performance on a given mesh size than state-of-the-art approaches (as much as 38% for the benchmark applications considered).

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:31 ,  Issue: 12 )