By Topic

Asynchronous processor survey

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Werner, T. ; California Univ., Davis, CA, USA ; Akella, V.

Virtually all computers today are synchronous. As systems grow increasingly large and complex the clock can cause big problems with clock skew, a timing delay that can create havoc with the overall design. It can also increase the circuit silicon and power dissipation, which can affect overheating and power supplies. Computer architecture researchers are actively considering asynchronous processor design. Asynchronous architectures permit modular design. Each subsystem or functional block can be optimized without being synchronized to a global clock, which simplifies interfacing. Moreover, an asynchronous system exhibits the average performance of all the individual components, rather than the synchronous system's worst-case performance of a single component. Furthermore, asynchronous processors may yet prove to offer reduced power dissipation by inherently shutting down unused portions of the circuit. This article examines the key architecture issues that concern designers and compares six developmental asynchronous architectures: CAP, the Caltoch Asynchronous Processor; FAM, the Fully Asynchronous Microprocessor; NSR, the Nonsynchronous RISC; CFPP, the Counterflow Pipeline Processor; Strip, a Self-Assured RISC Processor; and Amulet 1

Published in:

Computer  (Volume:30 ,  Issue: 11 )