By Topic

A new representation of energy storage systems operation using Fourier theory in optimal smart grids management

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Riva Sanseverino, E. ; DIEETCAM, Univ. di Palermo, Palermo, Italy ; Di Silvestre, M.L. ; Graditi, G. ; Zizzo, G.
more authors

This paper investigates the possibility to use a new modeling of Energy Storage Systems based on zero integral functions. Such functions represent the course of the energy level stored in batteries during the solution of optimal management problems in smart-grids. Storage devices, such as all the other components that are required to meet an integral capacity constraint along the dispatch time, must show the same State of Charge at the start and at the end of the timeframe considered for operation. In this paper, a set of sinusoidal functions have been used for the synthesis of the charge and discharge course of energy Storage Systems. Such representation allows to eliminate the difficult constraint about the State of Charge at the start and at the end of the considered timeframe and in general allows to reduce the number of parameters involved in the optimization. A few tests of the proposed representation for an optimal dispatch problem solved with evolutionary computation in a small distribution system is considered in the application section.

Published in:

Energy Conference and Exhibition (ENERGYCON), 2012 IEEE International

Date of Conference:

9-12 Sept. 2012