By Topic

Efficient Analysis of Electromagnetic Scattering from Electrically Large Complex Objects by Using Phase-Extracted Basis Functions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Su Yan ; Dept. of Microwave Eng., Univ. of Electron. Sci. & Technol. of China, Chengdu, China ; Si Ren ; Zaiping Nie ; Shiquan He
more authors

Efficient analysis of electromagnetic-wave responses from electrically large complex objects is a crucial but difficult topic in many applications of electromagnetic engineering. Among various numerical methods, the Method of Moments (MoM) solves for surface- or volume-distributed equivalent currents, which are expanded in terms of basis functions. In this paper, the traveling-wave phase variation has been incorporated into the basis functions to enhance their capability of describing the equivalent surface currents induced over surfaces of perfect electric conductors (PECs). A rigorous derivation is first given as physical insight, to show that the induced surface current is composed of a traveling-wave term and several standing-wave terms. A phase-extracted basis function (PEBF) is then proposed to describe the traveling current wave, and is applied in solving the electromagnetic scattering from three-dimensional (3D) PEC objects with smooth surfaces. By hybridizing the phase-extracted basis function with higher-order hierarchical basis functions, a moving standing-wave (MSW) basis function is further introduced to describe both the traveling-wave and the standing-wave terms in the induced surface current. It is shown from several numerical examples that the moving standing-wave basis function has excellent performance for solving electromagnetic scattering from three-dimensional PEC objects with both smooth and non-smooth surfaces, as well as for three-dimensional PEC cavities. After that, the unique properties of the phase-extracted basis function are utilized in the “sparsification” of the MoM matrix, and in the fast calculation of wideband responses. With the aid of the phase-extracted basis function and the moving standing-wave basis functions, the total memory requirements and the computational time can be significantly reduced, while numerical solutions can be obtained with good accuracy. The advantages of the phase-extracted basis function- and the moving standing-wave basis functions in predicting electromagnetic scattering from electrically large complex objects are summarized before the conclusions are drawn.

Published in:

Antennas and Propagation Magazine, IEEE  (Volume:54 ,  Issue: 5 )