By Topic

Feature weighted nearest neighbour classification for accelerometer-based gesture recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Marasovic, T. ; Fac. of Electr. Eng., Mech. Eng. & Naval Archit., Univ. of Split, Split, Croatia ; Papic, V.

Understanding human gestures can be posed as a typical classification problem. Within the computer, gestures are represented as time-varying patterns in feature space. These patterns, though variable, are distinct and have associated meanings. In the absence of a priori knowledge of the underlying class probabilities, classification is performed based on some notion of similarity, e.g. distance, among samples. The k-nearest neighbour (kNN) decision rule has often been used in these pattern recognition problems. The use of this particular technique gives rise to multiple issues, one of them being that it operates under the implicit assumption that all features are of equal importance in deciding the class membership of the pattern to be classified, regardless of their "relevancy". This paper presents an accelerometer-based gesture recognition system that utilizes Mahalanobis distance metric learning to derive optimal weighting scheme for nearest neighbour classification. The metric is trained with the goal of separating different classes by large local margins and pulling closer together samples from the same class, based on using as few features as possible. Our experiments on an arbitrary gesture set show that the proposed method leads to significant improvements in recognition accuracies, yielding simultaneously a maximum of feature discrimination.

Published in:

Software, Telecommunications and Computer Networks (SoftCOM), 2012 20th International Conference on

Date of Conference:

11-13 Sept. 2012