By Topic

Using a hash-based method with transaction trimming for mining association rules

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jong Soo Park ; Dept. of Comput. Sci., Sungshin Women's Univ., Seoul, South Korea ; Ming-Syan Chen ; P. S. Yu

We examine the issue of mining association rules among items in a large database of sales transactions. Mining association rules means that, given a database of sales transactions, to discover all associations among items such that the presence of some items in a transaction will imply the presence of other items in the same transaction. The mining of association rules can be mapped into the problem of discovering large itemsets where a large itemset is a group of items that appear in a sufficient number of transactions. The problem of discovering large itemsets can be solved by constructing a candidate set of itemsets first, and then, identifying, within this candidate set, these itemsets that meet the large itemset requirement. Generally, this is done iteratively for each large k-itemset in increasing order of k, where a large k-itemset is a large itemset with k items. To determine large itemsets from a huge number of candidate sets in early iterations is usually the dominating factor for the overall data mining performance. To address this issue, we develop an effective algorithm for the candidate set generation. It is a hash-based algorithm and is especially effective for the generation of a candidate set for large 2-itemsets. Explicitly, the number of candidate 2-itemsets generated by the proposed algorithm is, in orders of magnitude, smaller than that by previous methods, thus resolving the performance bottleneck. Note that the generation of smaller candidate sets enables us to effectively trim the transaction database size at a much earlier stage of the iterations, thereby reducing the computational cost for later iterations significantly. The advantage of the proposed algorithm also provides us the opportunity of reducing the amount of disk I/O required. An extensive simulation study is conducted to evaluate performance of the proposed algorithm

Published in:

IEEE Transactions on Knowledge and Data Engineering  (Volume:9 ,  Issue: 5 )