Scheduled System Maintenance:
On Wednesday, July 29th, IEEE Xplore will undergo scheduled maintenance from 7:00-9:00 AM ET (11:00-13:00 UTC). During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

A fast iterative greedy algorithm for MEG source localization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Obregon-Henao, G. ; Dept. of Anesthesia, Critical Care, & Pain Med., Massachusetts Gen. Hosp., Boston, MA, USA ; Babadi, B. ; Lamus, C. ; Brown, E.N.
more authors

Recent dynamic source localization algorithms for the Magnetoencephalographic inverse problem use cortical spatio-temporal dynamics to enhance the quality of the estimation. However, these methods suffer from high computational complexity due to the large number of sources that must be estimated. In this work, we introduce a fast iterative greedy algorithm incorporating the class of subspace pursuit algorithms for sparse source localization. The algorithm employs a reduced order state-space model resulting in significant computational savings. Simulation studies on MEG source localization reveal substantial gains provided by the proposed method over the widely used minimum-norm estimate, in terms of localization accuracy, with a negligible increase in computational complexity.

Published in:

Engineering in Medicine and Biology Society (EMBC), 2012 Annual International Conference of the IEEE

Date of Conference:

Aug. 28 2012-Sept. 1 2012