Cart (Loading....) | Create Account
Close category search window
 

SHAPES: A novel approach for learning search heuristics in under-constrained optimization problems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Doan, K.P.V. ; Dept. of Electr. & Electron. Eng., Western Australia Univ., Nedlands, WA, Australia ; Kit Po Wong

Although much research in machine learning has been carried out on acquiring knowledge for problem-solving in many problem domains, little effort has been focused on learning search-control knowledge for solving optimization problems. This paper reports on the development of SHAPES, a system that learns heuristic search guidance for solving optimization problems in intractable, under-constrained domains based on the Explanation-Based Learning (EBL) framework. The system embodies two new and novel approaches to machine learning. First, it makes use of explanations of varying levels of approximation as a mean for verifying heuristic-based decisions, allowing heuristic estimates to be revised and corrected during problem-solving. The provision of such a revision mechanism is particularly important when working in intractable and under-constrained domains, where heuristics tend to be highly over-generalized, and hence at times will give rise to incorrect results. Second, it employs a new linear and quadratic programming-based weight-assignment algorithm formulated to direct search toward optimal solutions under best-first search. The algorithm offers a direct method for assigning rule strengths and, in so doing, avoids the need to address the credit-assignment problem faced by other iterative weight-adjustment methods

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:9 ,  Issue: 5 )

Date of Publication:

Sep/Oct 1997

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.