By Topic

Use of contextual information for feature ranking and discretization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Se June Hong ; Div. of Res., IBM Thomas J. Watson Res. Center, Yorktown Heights, NY, USA

Deriving classification rules or decision trees from examples is an important problem. When there are too many features, discarding weak features before the derivation process is highly desirable. When there are numeric features, they need to be discretized for the rule generation. We present a new approach to these problems. Traditional techniques make use of feature merits based on either the information theoretic, or the statistical correlation between each feature and the class. We instead assign merits to features by finding each feature's “obligation” to the class discrimination in the context of other features. The merits are then used to rank the features, select a feature subset, and discretize the numeric variables. Experience with benchmark example sets demonstrates that the new approach is a powerful alternative to the traditional methods. This paper concludes by posing some new technical issues that arise from this approach

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:9 ,  Issue: 5 )