By Topic

A new microfluidic device for electric lysis and separation of cells

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Brun, M. ; Ampere Lab., Ecole Centrale de Lyon, Ecully, France ; Frenea-Robin, M. ; Chateaux, J.F. ; Haddour, N.
more authors

This paper demonstrates the potential use of a new microfluidic device embedding thick electrodes for cell lysis and cell separation applications. The system consists of a microfluidic channel featuring conductive walls made of a polydimethylsiloxane (PDMS) matrix mixed with carbon nanoparticles. Cell lysis was performed electrically by applying square pulses across the channel width, which was monitored by fluorimetry. Lysed and unlysed cells showed different dielectrophoretic behavior under appropriate experimental conditions, which suggests that the developed device is suitable to perform both cell lysis and subsequent sorting of viable and dead cells.

Published in:

Engineering in Medicine and Biology Society (EMBC), 2012 Annual International Conference of the IEEE

Date of Conference:

Aug. 28 2012-Sept. 1 2012