By Topic

Development of a temperature distribution simulator for lung RFA based on air dependence of thermal and electrical properties

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Yamazaki, N. ; Grad. Sch. of Sci. & Eng., Waseda Univ., Tokyo, Japan ; Watanabe, H. ; XiaoWei Lu ; Isobe, Y.
more authors

Radio frequency ablation (RFA) for lung cancer has increasingly been used over the past few years, because it is a minimally invasive treatment. As a feature of RFA for lung cancer, lung contains air. Air is low thermal and electrical conductivity. Therefore, RFA for this cancer has the advantage that only the cancer is coagulated, because the heated area is confined to the immediate vicinity of the heating point. However, it is difficult for operators to control the precise formation of coagulation zones due to inadequate imaging modalities. We propose a method using finite element method to analyze the temperature distribution of the organ in order to overcome the current deficiencies. Creating an accurate thermal physical model was a challenging problem because of the complexities of the thermal properties of the organ. In this study, we developed a temperature distribution simulator for lung RFA using thermal and electrical properties that were based on the lung's internal air dependence. In addition, we validated the constructed simulator in an in vitro study, and the lung's internal heat transfer during RFA was validated quantitatively.

Published in:

Engineering in Medicine and Biology Society (EMBC), 2012 Annual International Conference of the IEEE

Date of Conference:

Aug. 28 2012-Sept. 1 2012