Cart (Loading....) | Create Account
Close category search window

Prediction of extubation readiness in extreme preterm infants based on measures of cardiorespiratory variability

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
8 Author(s)
Precup, D. ; Dept. of Comput. Sci., McGill Univ., Montreal, QC, Canada ; Robles-Rubio, C.A. ; Brown, K.A. ; Kanbar, L.
more authors

The majority of extreme preterm infants require endotracheal intubation and mechanical ventilation (ETT-MV) during the first days of life to survive. Unfortunately this therapy is associated with adverse clinical outcomes and consequently, it is desirable to remove ETT-MV as quickly as possible. However, about 25% of extubated infants will fail and require re-intubation which is also associated with a 5-fold increase in mortality and a longer stay in the intensive care unit. Therefore, the ultimate goal is to determine the optimal time for extubation that will minimize the duration of MV and maximize the chances of success. This paper presents a new objective predictor to assist clinicians in making this decision. The predictor uses a modern machine learning method (Support Vector Machines) to determine the combination of measures of cardiorespiratory variability, computed automatically, that best predicts extubation readiness. Our results demonstrate that this predictor accurately classified infants who would fail extubation.

Published in:

Engineering in Medicine and Biology Society (EMBC), 2012 Annual International Conference of the IEEE

Date of Conference:

Aug. 28 2012-Sept. 1 2012

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.