By Topic

Cell tracking and mitosis detection using splitting flow networks in phase-contrast imaging

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Massoudi, A. ; Sch. of Comput. Sci. & Eng., Univ. of New South Wales, Sydney, NSW, Australia ; Semenovich, D. ; Sowmya, A.

Cell tracking is a crucial component of many biomedical image analysis applications. Many available cell tracking systems assume high precision of the cell detection module. Therefore low performance in cell detection can heavily affect the tracking results. Unfortunately cell segmentation modules often have significant errors, especially in the case of phase-contrast imaging. In this paper we propose a tracking method that does not rely on perfect cell segmentation and can deal with uncertainties by exploiting temporal information and aggregating the results of many frames. Our tracking algorithm is fully automated and can handle common challenges of tracking such as cells entering/exiting the screen and mitosis events. To handle the latter, we modify the standard flow network and introduce the concept of a splitting node into it. Experiment results show that adding temporal information from the video microscopy improves the cell/mitosis detection and results in a better tracking system.

Published in:

Engineering in Medicine and Biology Society (EMBC), 2012 Annual International Conference of the IEEE

Date of Conference:

Aug. 28 2012-Sept. 1 2012