By Topic

Markerless registration for intracerebral hemorrhage surgical system using weighted Iterative Closest Point (ICP)

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Sangkyun Shin ; Korea Inst. of Sci. & Technol., Seoul, South Korea ; Deukhee Lee ; Youngjun Kim ; Sehyung Park

It is required to use a stereotactic frame on a patient's crainial surface to access an intracerebral hematoma in conventional ICH (Intracerebral Hemorrhage) removal surgery. Since ICH using a stereotactic frame is an invasive procedure and also takes a long time, we attempt to develop a robotic ICH removal procedure with a markerless registration system using an optical 3-D scanner. Preoperative planning is performed using a patient's CT (Computed Tomography) images, which include the patient's 3-D geometrical information on the hematoma and internal structures of brain. To register the preplanned data and the intraoperative patient's data, the patient's facial surface is scanned by an optical 3-D scanner on the bed in the operating room. The intraoperatively scanned facial surface is registered to the pose of the patient's preoperative facial surface. The conventional ICP (Iterative Closest Point) algorithm can be used for the registration. In this paper, we propose a weighted ICP in order to improve the accuracy of the registration results. We investigated facial regions that can be used as anatomical landmarks. The facial regions for the landmarks in the preoperative 3-D model are weighted for more accurate registration. We increase weights at the relatively undeformed facial regions, and decrease weights at the other regions. As a result, more accurate and robust registration can be achieved from the preoperative data even with local facial shape changes.

Published in:

Engineering in Medicine and Biology Society (EMBC), 2012 Annual International Conference of the IEEE

Date of Conference:

Aug. 28 2012-Sept. 1 2012