By Topic

Capturing habitual, in-home gait parameter trends using an inexpensive depth camera

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Stone, E.E. ; Dept. of Electr. & Comput. Eng., Univ. of Missouri, Columbia, MO, USA ; Skubic, M.

Results are presented for measuring the gait parameters of walking speed, stride time, and stride length of five older adults continuously, in their homes, over a four month period. The gait parameters were measured passively, using an inexpensive, environmentally mounted depth camera, the Microsoft Kinect. Research has indicated the importance of measuring a person's gait for a variety of purposes from fall risk assessment to early detection of health problems such as cognitive impairment. However, such assessments are often done infrequently and most current technologies are not suitable for continuous, long term use. For this work, a single Microsoft Kinect sensor was deployed in four apartments, containing a total of five residents. A methodology for generating trends in walking speed, stride time, and stride length based on data from identified walking sequences in the home is presented, along with trend estimates for the five participants who were monitored for this work.

Published in:

Engineering in Medicine and Biology Society (EMBC), 2012 Annual International Conference of the IEEE

Date of Conference:

Aug. 28 2012-Sept. 1 2012