Cart (Loading....) | Create Account
Close category search window
 

Comparing adaptive algorithms to measure temporal gait parameters using lower body mounted inertial sensors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
2 Author(s)
Patterson, M.R. ; CLARITY Centre for Sensor Web Technol., Univ. Coll. Dublin, Dublin, Ireland ; Caulfield, B.

The purpose of this research was to compare different adaptive algorithms in terms of their ability to determine temporal gait parameters based on data acquired from inertial measurement units (IMUs). Eight subjects performed 25 walking trials over a force plate under five different conditions; normal, fast, slow, simulated stiff ankle and simulated stiff knee walking. Data from IMUs worn on the shanks and on the feet were used to identify temporal gait features using three different adaptive algorithms (Green, Selles & Sabatini). Each method's ability to estimate temporal events was compared to the gold standard force plate method for stance time (Greene, r= .990, Selles, r= 0.865, Sabatini, r= 0.980) and double support time (Greene, r= .837, Selles, r= .583, Sabatini, r= .745). The Greene method of estimating gait events from inertial sensor data resulted in the most accurate stance and double support times.

Published in:

Engineering in Medicine and Biology Society (EMBC), 2012 Annual International Conference of the IEEE

Date of Conference:

Aug. 28 2012-Sept. 1 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.