Scheduled System Maintenance on December 17th, 2014:
IEEE Xplore will be upgraded between 2:00 and 5:00 PM EST (18:00 - 21:00) UTC. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Integrative technology-based approach of microelectromechanical systems (MEMS) for biosensing applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

10 Author(s)
Nicu, L. ; Lab. of Anal. & Archit. of Syst., Center of Nat. Sci. Res., Toulouse, France ; Alava, T. ; Leichle, T. ; Saya, D.
more authors

In this work we simultaneously aim at addressing the design and fabrication of microelectromechanical systems (MEMS) for biological applications bearing actuation and readout capabilities together with adapted tools dedicated to surface functionalization at the microscale. The biosensing platform is based on arrays of silicon micromembranes with piezoelectric actuation and piezoresistive read-out capabilities. The detection of the cytochrome C protein using molecularly imprinted polymers (MIPs) as functional layer is demonstrated. The adapted functionalization tool specifically developed to match the micromembranes' platform is an array of silicon cantilevers incorporating precise force sensors for the trim and force measurements during deposition of biological materials onto the sensors' active area. In either case, associated analog electronics is specifically realized to deal with specific signals treatment fed through the MEMS-based devices.

Published in:

Engineering in Medicine and Biology Society (EMBC), 2012 Annual International Conference of the IEEE

Date of Conference:

Aug. 28 2012-Sept. 1 2012