By Topic

Identification of nonlinear fMRI models using Auxiliary Particle Filter and kernel smoothing method

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hettiarachchi, I.T. ; Centre for Intell. Syst. Res., Deakin Univ., Geelong, VIC, Australia ; Mohamed, S. ; Nahavandi, S.

Hemodynamic models have a high potential in application to understanding the functional differences of the brain. However, full system identification with respect to model fitting to actual functional magnetic resonance imaging (fMRI) data is practically difficult and is still an active area of research. We present a simulation based Bayesian approach for nonlinear model based analysis of the fMRI data. The idea is to do a joint state and parameter estimation within a general filtering framework. One advantage of using Bayesian methods is that they provide a complete description of the posterior distribution, not just a single point estimate. We use an Auxiliary Particle Filter adjoined with a kernel smoothing approach to address this joint estimation problem.

Published in:

Engineering in Medicine and Biology Society (EMBC), 2012 Annual International Conference of the IEEE

Date of Conference:

Aug. 28 2012-Sept. 1 2012