By Topic

Transcranial direct current stimulation and EEG-based motor imagery BCI for upper limb stroke rehabilitation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Kai Keng Ang ; Inst. for Infocomm Res., Agency for Sci., Technol. & Res. (A*STAR), Singapore, Singapore ; Cuntai Guan ; Kok Soon Phua ; Chuanchu Wang
more authors

Clinical studies had shown that EEG-based motor imagery Brain-Computer Interface (MI-BCI) combined with robotic feedback is effective in upper limb stroke rehabilitation, and transcranial Direct Current Stimulation (tDCS) combined with other rehabilitation techniques further enhanced the facilitating effect of tDCS. This motivated the current clinical study to investigate the effects of combining tDCS with MI-BCI and robotic feedback compared to sham-tDCS for upper limb stroke rehabilitation. The stroke patients recruited were randomized to receive 20 minutes of tDCS or sham-tDCS prior to 10 sessions of 1-hour MI-BCI with robotic feedback for 2 weeks. The online accuracies of detecting motor imagery from idle condition were assessed and offline accuracies of classifying motor imagery from background rest condition were assessed from the EEG of the evaluation and therapy parts of the 10 rehabilitation sessions respectively. The results showed no evident differences between the online accuracies on the evaluation part from both groups, but the offline analysis on the therapy part yielded higher averaged accuracies for subjects who received tDCS (n=3) compared to sham-tDCS (n=2). The results suggest towards tDCS effect in modulating motor imagery in stroke, but a more conclusive result can be drawn when more data are collected in the ongoing study.

Published in:

Engineering in Medicine and Biology Society (EMBC), 2012 Annual International Conference of the IEEE

Date of Conference:

Aug. 28 2012-Sept. 1 2012