By Topic

Effects of rates of spontaneous synaptic vesicle secretions in inner hair cells on information transmission in an auditory nerve fiber model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kumsa, P. ; Grad. Sch. of Eng., Kanto Gakuin Univ., Yokohama, Japan ; Mino, H.

In this article, we investigate how the rates of spontaneous synaptic vesicle secretions affect information transmission of the spike trains in response to the inner hair cell (IHC) synaptic currents in an auditory nerve fiber (ANF) model through computer simulations. The IHC synaptic currents were modeled by a filtered inhomogeneous Poisson process modulated with sinusoidal functions, while the stochastic ion channel model was incorporated into each node of Ranvier in the ANF model with spiral ganglion. The information rates were estimated from the entropies of the inter-spike intervals of the spike trains to evaluate information transmission in the ANF model. The results show that the information rates increased, reached a maximum, and then decreased as the rate of spontaneous secretion increased, implying a resonance phenomenon dependent on the rate of spontaneous IHC synaptic secretions. In conclusion, this phenomenon similar to the regular stochastic resonance may be observed due to that spontaneous IHC synaptic secretions may act as an origin of fluctuation or noise, and these findings may play a key role in the design of better auditory prostheses.

Published in:

Engineering in Medicine and Biology Society (EMBC), 2012 Annual International Conference of the IEEE

Date of Conference:

Aug. 28 2012-Sept. 1 2012