Cart (Loading....) | Create Account
Close category search window
 

Multivariate time-variant identification of cardiovascular variability signals: a beat-to-beat spectral parameter estimation in vasovagal syncope

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Mainardi, L.T. ; Dept. of Biomed. Eng., Politecnico Univ. Milano, Italy ; Bianchi, A.M. ; Furlan, R. ; Piazza, S.
more authors

In this paper a bivariate, time-variant model able to continuously measure the mutual interactions between heart rate and systolic blood pressure variability signals is presented. A recursive identification of the model parameters makes it possible to estimate, on a beat-to-beat basis, spectral low-frequency (LF) and high-frequency (HF) power (LF/HF ratio) and cross-spectral (coherence and phase relationships between spectral peaks) indexes during nonstationary events. These indexes can be helpful in: 1) physiological study of autonomic nervous system mechanisms of cardiovascular control and 2) quantification and clinical evaluation of the neural and mechanical links between the two signals. In addition, an estimate of baroreceptive activation (α-gain) is continuously extracted. Before applying the model to cardiovascular signals, the reliability of the estimated parameters was tested on simulated signals. Subsequently, the model was applied to investigating vasovagal syncope episodes, aiming at the assessment of autonomic nervous system status and autonomic role in the dynamic phenomena which lead to syncope. The proposed model, which provides noninvasive beat-to-beat evaluation of the autonomic events, may be useful in the description of the syncopal episodes and in the comprehension of the complex physiological mechanisms of syncope.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:44 ,  Issue: 10 )

Date of Publication:

Oct. 1997

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.