By Topic

Towards a predictive model of electroporation-based therapies using pre-pulse electrical measurements

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Paulo A. Garcia ; Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Blacksburg, 24061 USA ; Christopher B. Arena ; Rafael V. Davalos

Electroporation-based therapies have been gaining momentum as minimally invasive techniques to facilitate transport of exogenous agents, or directly kill tumors and other undesirable tissue in a non-thermal manner. Typical procedures involve placing electrodes into or around the treatment area and delivering a series of short and intense electric pulses to the tissue/tumor. These pulses create defects in the cell membranes, inducing non-linear changes in the electric conductivity of the tissue. These dynamic conductivity changes redistribute the electric field, and thus the treatment volume. In this study, we develop a statistical model that can be used to determine the baseline conductivity of tissues prior to electroporation and is capable of predicting the non-linear current response with implications for treatment planning and outcome confirmation.

Published in:

2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society

Date of Conference:

Aug. 28 2012-Sept. 1 2012