By Topic

Supercomputing enabling exhaustive statistical analysis of genome wide association study data: Preliminary results

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

14 Author(s)
Reumann, M. ; IBM Res. Collaboratory for Life Sci.-Melbourne, Carlton, VIC, Australia ; Makalic, E. ; Goudey, B.W. ; Inouye, M.
more authors

Most published GWAS do not examine SNP interactions due to the high computational complexity of computing p-values for the interaction terms. Our aim is to utilize supercomputing resources to apply complex statistical techniques to the world's accumulating GWAS, epidemiology, survival and pathology data to uncover more information about genetic and environmental risk, biology and aetiology. We performed the Bayesian Posterior Probability test on a pseudo data set with 500,000 single nucleotide polymorphism and 100 samples as proof of principle. We carried out strong scaling simulations on 2 to 4,096 processing cores with factor 2 increments in partition size. On two processing cores, the run time is 317h, i.e. almost two weeks, compared to less than 10 minutes on 4,096 processing cores. The speedup factor is 2,020 that is very close to the theoretical value of 2,048. This work demonstrates the feasibility of performing exhaustive higher order analysis of GWAS studies using independence testing for contingency tables. We are now in a position to employ supercomputers with hundreds of thousands of threads for higher order analysis of GWAS data using complex statistics.

Published in:

Engineering in Medicine and Biology Society (EMBC), 2012 Annual International Conference of the IEEE

Date of Conference:

Aug. 28 2012-Sept. 1 2012