By Topic

The use of a novel carbon nanotube coated microelectrode array for chronic intracortical recording and microstimulation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Parker, R.A. ; Interdept. Program in Neurosci., Univ. of Utah, Salt Lake City, UT, USA ; Negi, S. ; Davis, T. ; Keefer, E.W.
more authors

Micro-electrode arrays (MEAs) have been used in a variety of intracortical neural prostheses. While intracortical MEAs have demonstrated their utility in neural prostheses, in many cases MEA performance declines after several months to years of in vivo implantation. The application of carbon nanotubes (CNTs) may increase the functional longevity of intracortical MEAs through enhanced biocompatibility and charge injection properties. An MEA metalized with platinum (Pt) on all electrodes had a CNT coating applied to the electrodes on half of the array. This Pt/Pt-CNT MEA was implanted into feline motor cortex for >;1 year. Recordings of action potentials and 1 kHz impedance measurements were made on all electrodes to evaluate device functionality. Additionally, electromyogram (EMG) responses were evoked using micro-stimulation via the MEA to measure device performance. These metrics were compared between Pt and Pt-CNT electrodes. There was no significant difference in the data acquisition or micro-stimulation performance of Pt and the Pt-CNT electrodes. However, impedances were lower on the Pt-CNT electrodes. These results demonstrate the functionality of CNT coatings during chronic in vivo implantation. The lower impedances suggest that for microstimulation applications CNT coatings may impart enhanced interface properties.

Published in:

Engineering in Medicine and Biology Society (EMBC), 2012 Annual International Conference of the IEEE

Date of Conference:

Aug. 28 2012-Sept. 1 2012