Cart (Loading....) | Create Account
Close category search window
 

Effects of magnesium on growth and proliferation of human embryonic stem cells

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Thanh Yen Nguyen ; Univ. of California, Riverside, Riverside, CA, USA ; Garcia, S. ; Chee Gee Liew ; Huinan Liu

The effects of magnesium on the growth and proliferation of human embryonic stem cells (hESCs) was explored to advance magnesium as an implant biomaterial. When magnesium ions from magnesium salt were added to the culture media at 10, 100, 250, 500, 750, and 1000 ppm (0.4, 4, 10, 20, 30, 40 mM) the rate of increase in viable cell coverage over time was higher for the larger doses of magnesium salt. Thus, the addition of magnesium ions exerted a positive effect on viable cell coverage. When hESCs were cultured with pure magnesium metal strips through transwell inserts, the cells underwent an initial increase in viable cell coverage, followed by rapid cell death within the first 24 hours. This initial increase in viable cell coverage corresponded to the colonies dispersing and losing their tightly packed morphologies. The cell death may be attributed to an increased alkalinity in the culture media incubated with the magnesium metal strips. In conclusion, since the degradation of magnesium results in both magnesium ions and OH- ions (an increase of pH), controlling the degradation of magnesium to obtain the perfect balance of ions is critical for advancing magnesium as an implant biomaterial.

Published in:

Engineering in Medicine and Biology Society (EMBC), 2012 Annual International Conference of the IEEE

Date of Conference:

Aug. 28 2012-Sept. 1 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.