By Topic

Quantitative assessment of levodopa-induced dyskinesia using automated motion sensing technology

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Mera, T.O. ; Great Lakes NeuroTechnologies Inc., Cleveland, OH, USA ; Burack, M.A. ; Giuffrida, J.P.

The objective was to capture levodopa-induced dyskinesia (LID) in patients with Parkinson's disease (PD) using body-worn motion sensors. Dopaminergic treatment in PD can induce abnormal involuntary movements, including choreatic dyskinesia (brief, rapid, irregular movements). Adjustments in medication to reduce LID often sacrifice control of motor symptoms, and balancing this tradeoff poses a significant challenge for management of advanced PD. Fifteen PD subjects with known LID were recruited and instructed to perform two stationary motor tasks while wearing a compact wireless motion sensor unit positioned on each hand over the course of a levodopa dose cycle. Videos of subjects performing the motor tasks were later scored by expert clinicians to assess global dyskinesia using the modified Abnormal Involuntary Rating Scale (m-AIMS). Kinematic features were extracted from motion data in different frequency bands (1-3Hz and 3-8Hz) to quantify LID severity and to distinguish between LID and PD tremor. Receiver operator characteristic analysis was used to determine thresholds for individual features to detect the presence of LID. A sensitivity of 0.73 and specificity of 1.00 were achieved. A neural network was also trained to output dyskinesia severity on a 0 to 4 scale, similar to the m-AIMS. The model generalized well to new data (coefficient of determination= 0.85 and mean squared error= 0.3). This study demonstrated that hand-worn motion sensors can be used to assess global dyskinesia severity independent of PD tremor over the levodopa dose cycle.

Published in:

Engineering in Medicine and Biology Society (EMBC), 2012 Annual International Conference of the IEEE

Date of Conference:

Aug. 28 2012-Sept. 1 2012