By Topic

Dual energy pulses for Electrical Impedance Spectroscopy with the stochastic Gabor function

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Giorgio Bonmassar ; AA Martinos Center, Harvard Medical School, Charlestown, MA 02129 USA ; Maria Ida Iacono ; Michael H. Lev

This paper introduces the stochastic Gabor function (SGF), an excitation waveform that can be used to design optimal excitation pulses for Electrical Impedance Spectroscopy (EIS) of the brain. The SGF is a Gaussian function modulated by uniformly distributed noise; it has wide frequency spectrum representation regardless of the stimuli pulse length. The SGF was studied in the time-frequency domain. As shown by frequency concentration measurements, the SGF is least compact in the sample frequency phase plane. Numerical results obtained by using a realistic human head model indicate that the SGF may allow for both shallow and deeper tissue penetration than is currently obtainable with conventional stimulus paradigms, potentially facilitating tissue subtraction assessment of parenchymal dielectric changes in frequency. This could be of value in advancing EIS of stroke and hemorrhage.

Published in:

2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society

Date of Conference:

Aug. 28 2012-Sept. 1 2012