By Topic

Simultaneous ODF estimation and tractography in HARDI

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Cetingul, H.E. ; Corp. Res. & Technol., Siemens Corp., Princeton, NJ, USA ; Nadar, M. ; Thompson, P. ; Sapiro, G.
more authors

We consider the problem of tracking white matter fibers in high angular resolution diffusion imaging (HARDI) data while simultaneously estimating the local fiber orientation profile. Prior work showed that an unscented Kalman filter (UKF) can be used for this problem, yet existing algorithms employ parametric mixture models to represent water diffusion and to define the state space. To address this restrictive model dependency, we propose to extend the UKF to HARDI data modeled by orientation distribution functions (ODFs), a more generic diffusion model. We consider the spherical harmonic representation of the HARDI signal as the state, enforce nonnegativity of the ODFs, and perform tractography using the directions at which the ODFs attain their peaks. In simulations, our method outperforms filtered two-tensor tractography at different levels of noise by achieving a reduction in mean Chamfer error of 0.05 to 0.27 voxels; it also produced in vivo fiber tracking that is consistent with the neuroanatomy.

Published in:

Engineering in Medicine and Biology Society (EMBC), 2012 Annual International Conference of the IEEE

Date of Conference:

Aug. 28 2012-Sept. 1 2012