By Topic

DTI for assessing axonal integrity after contusive spinal cord injury and transplantation of oligodendrocyte progenitor cells

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Bazley, F.A. ; Dept. of Biomed. Eng., Johns Hopkins Univ., Baltimore, MD, USA ; Pourmorteza, A. ; Gupta, S. ; Pashai, N.
more authors

We describe the feasibility of using diffusion tensor magnetic resonance imaging (DT-MRI) to study a contusive model of rat spinal cord injury following human stem cell transplantation at and around the site of injury. Rats receiving either a laminectomy or contusion injury were transplanted with oligodendrocyte precursor cells (OPCs). During the course of the study, bioluminescence imaging (BLI; up to 100 days) and somatosensory evoked potentials (SSEPs; up to 42 days) were used to evaluate cell survival and functional outcomes. Spinal cords were then analyzed ex vivo upon termination using diffusion tensor imaging (DTI). Improvements in fractional anisotropy (FA) at day 100 post-transplantation corresponded with cell survival and functional SSEP improvements. Thus, we illustrate the feasibility of DTI for evaluating axonal integrity in SCI after cell replacement therapies, and we provide examples utilizing OPC transplantations in a contusion rat model.

Published in:

Engineering in Medicine and Biology Society (EMBC), 2012 Annual International Conference of the IEEE

Date of Conference:

Aug. 28 2012-Sept. 1 2012