System Maintenance:
There may be intermittent impact on performance while updates are in progress. We apologize for the inconvenience.
By Topic

A unified impedance-based fault location method for generalized distribution systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ferreira, G.D. ; Dept. of Electr. Eng., Fed. Univ. of Rio Grande do Sul-UFRGS, Porto Alegre, Brazil ; Gazzana, D.S. ; Bretas, A.S. ; Netto, A.S.

This paper proposes an extended and unified impedance-based fault location method which accounts for the inherent characteristics of distribution systems (unbalanced operation, presence of intermediate loads, laterals, and time-varying load profile). The technique is developed using phase-component analysis, and uses only local voltages and currents as input data. The time-varying load profile of distributions systems is considered by using an iterative procedure to update the load data used in the fault location algorithm. The procedure is based on matching both magnitude and angle of the prefault load impedance at the local terminal and the load impedance estimated through a power-flow analysis. In determining the equivalent power flow paths of branched distribution feeders a power-flow-based analysis is performed, enabling the technique to be applied in large distribution systems. Aiming to extend the application of the proposed method to underground in addition to overhead distribution systems, a set of generalized fault location equations which consider the shunt admittance of the lines was used. Test results show the accuracy and robustness of the fault location algorithm to different fault types, distances and resistances, considering system's load profile variations up to ± 50%.

Published in:

Power and Energy Society General Meeting, 2012 IEEE

Date of Conference:

22-26 July 2012