By Topic

Gene expression programming for static security assessment of power systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Khattab, H.M. ; Eng. for the Pet. & Process Ind. (ENPPI), Cairo, Egypt ; Abdelaziz, A.Y. ; Mekhamer, S.F. ; Badr, M.A.L.
more authors

In this paper, a novel gene expression programming (GEP) algorithm is introduced for power system static security assessment. The GEP algorithms as evolutionary algorithms for pattern classification have recently received attention for classification problems because they can perform global searches. The proposed methodology introduces the GEP for the first time in static security assessment problems. The proposed algorithm is examined using different IEEE standard test systems. Different contingency case studies have been used to test the proposed methodology. The GEP based algorithm formulates the problem as a multi-class classification problem using the one-against-all binarization method. The algorithm classifies the security of the power system into three classes, normal, alert and emergency. Performance of the algorithm is compared with other neural network based algorithm classifiers to show its superiority in static security assessment.

Published in:

Power and Energy Society General Meeting, 2012 IEEE

Date of Conference:

22-26 July 2012