By Topic

Application of Model Predictive Control for active load management in a distributed power system with high wind penetration

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

Summary form only given. This paper introduces an experimental platform (SYSLAB) for the research on advanced control and power system communication in distributed power systems and one of its components-an intelligent office building (PowerFlexHouse), which is used to investigate the technical potential for active load management. It also presents in detail how to implement a thermal Model Predictive Controller (MPC) for the heaters' power consumption prediction in the PowerFlexHouse. It demonstrates that this MPC strategy can realize load shifting, and using good predictions in MPC-based control, a better matching of demand and supply can be achieved. With this demand side control study, it is expected that MPC strategy for active load management can dramatically raise energy efficiency and improve grid reliability, when there is a high penetration of intermittent energy resources in the power system.

Published in:

2012 IEEE Power and Energy Society General Meeting

Date of Conference:

22-26 July 2012