By Topic

A structural time series approach to modeling dynamic trends in power system data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Messina, A.R. ; Dept. of Electr. Eng., Cinvestav, Mexico City, Mexico ; Vittal, V.

Structural time series models provide a natural framework for modeling time-varying trends in measured data. In this paper, a statistical framework for analyzing and estimating time-varying trends in measured data is developed. In this model, temporal patterns in measured data are modeled within a stochastic state space setting. Estimates of the time-varying parameters are then obtained using an optimal estimation method based on Kalman filters and associated smoothers. Both, synthetic and observational data are used to assess the predictive capability of the model. Results are compared to other detrending techniques in order to assess the potential of the methodology.

Published in:

Power and Energy Society General Meeting, 2012 IEEE

Date of Conference:

22-26 July 2012