By Topic

A smart transmission scheme for emergency data from a network of bio-sensors on the human body

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Aliabbas Vohra ; Dept. of Electr. & Comput. Eng., San Diego State Univ., San Diego, CA, USA ; Mahasweta Sarkar ; Gordon Lee

As a nation of an estimated 45 million uninsured and underinsured Americans (almost 15% of the population), out of which over 11 million suffer from chronic diseases who require constant medical supervision, America today is plagued by the national crisis of inadequate and expensive healthcare. This paper introduces an architecture of a multi-tier telemedicine system comprised of strategically placed bio-sensors on a human body capable of collecting vital medical statistics (such as heart rate and blood pressure) and transmitting them (wired or wirelessly)over multiple hops to a remote medical server at a caregiver's location thereby taking telemedicine from the desktop to roaming. However, fundamental wireless networking issues must be addressed and resolved before this dream can be realized. In this regards, this paper proposes a Medium Access Control (MAC) protocol specifically designed for a Wireless Body Area Network (WBAN). Our protocol is designed to cater to the Quality of Service (QoS) requirements that would be essential for an application like WBAN. It fuses data from several biosensors and based on the time criticality of the data, schedules them intelligently such that the data reaches its destination in a timely and energy efficient manner. Simulation results show that the traffic prioritization and scheduling scheme proposed in our MAC architecture surpasses the standard IEEE 802.15.4 MAC protocol in performance.

Published in:

Multisensor Fusion and Integration for Intelligent Systems (MFI), 2012 IEEE Conference on

Date of Conference:

13-15 Sept. 2012