By Topic

Robust multi-algorithm object recognition using Machine Learning methods

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Fromm, T. ; Inst. of Artificial Intell., Ravensburg-Weingarten Univ. of Appl. Sci., Weingarten, Germany ; Staehle, B. ; Ertel, W.

Robust object recognition is a crucial requirement for many robotic applications. We propose a method towards increasing reliability and flexibility of object recognition for robotics. This is achieved by the fusion of diverse recognition frameworks and algorithms on score level which use characteristics like shape, texture and color of the objects. Machine Learning allows for the automatic combination of the respective recognition methods' outputs instead of having to adapt their hypothesis metrics to a common basis. We show the applicability of our approach through several real-world experiments in a service robotics environment. Great importance is attached to robustness, especially in varying environments.

Published in:

Multisensor Fusion and Integration for Intelligent Systems (MFI), 2012 IEEE Conference on

Date of Conference:

13-15 Sept. 2012