By Topic

Modeling and control architecture for the competitive networked robot system based on POMDP

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Li Yan ; Inst. of Robot. & Inf. Autom. Syst., Nankai Univ., Tianjin, China ; Liu Jingtai ; Li Haifeng ; Lu Xiang
more authors

As the competitive networked robot system has the characteristics of strong interaction and high real-time request, the present control methods which are mostly used for the collaborative networked robot system may not be directly applied to the competitive one. Thus the hierarchical control architecture for the competitive networked robot system is proposed in this paper in order to adapt to its two characteristics above. To deal with the system observation uncertainty caused by noise and time delay, and the system action uncertainty caused by the opponent in the meantime, the control architecture based on Partially Observable Markov Decision Processes (POMDP) has been adopted by the executive layer to select the action of the maximum expected reward, thus fulfilling the intention of the strategy layer effectively. In addition, the introduction of the executive layer has successfully freed the strategic layer from the tasks that should have been completed by its bottom layer alone, thus enabling the strategic layer to focus more on its strategic design. In this paper, the networked robot system named Tele-LightSaber with a high degree of confrontation is designed and implemented, and the experiment results show the validity and efficiency of the proposed method on TLS platform.

Published in:

Multisensor Fusion and Integration for Intelligent Systems (MFI), 2012 IEEE Conference on

Date of Conference:

13-15 Sept. 2012